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8-1 Entropy and Mutual
Information



How much does the neural response tell us
about the stimulus?

Quantitatively

What forms of Neural response are optimal



Information Theory

« Information Theory: Quantifying the ability of a coding scheme or a communication channel
to convey information (stochastic & noisy process)

« Entropy: a measure of the theoretical capacity of a code to convey information

«  Mutual information: how much of that capacity is actually used when the code is employed
to describe a particular set of data

« Symbol: neuronal response / data: stimulus

« Simplified descriptions of the response of a neuron that reduce the number of possible
symbols that need to be considered



Entropy

« Large range of different responds — interesting (irregular / unpredictable)

« observing a response spike-count rate r with possibility P[r]

« Entropy — surprise: h(P[r]) = —log, (P|r])

: 1) decrease function. 2) h(P[r{]P|r,]) = h(P[r{]) + h(P[r,]) 3) information bits
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1.0 —
« Samerate —» P[r]=0o0r1 08—
2 0.6 -
« Have Two possible rate — P|ry] = P[ry] = % o 04"
0.2 4
0.0 I T T | |

00 02 04 06 08 1.0
Plr,]



Mutual information

What we can measure

« Different stimuli — Neural response different (does it correlate?)

« Mutual info: total response entropy — average response entropy on trials involving
different stimulus

* Hy=—-XPlrls]log; Plrls], Hnoise = 2 HsPls]
e I, =Y P[rs]log,—L  symmetric between r,s 1o
P[r]P[s] 084
* log, P|s|r] : reduce total stimulus entropy %22:
e I,=1+4+(1—Px)log,(1—Pyx)+ Pylog, Py 22_ T~
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Mutual information

Kullback-Leibler divergence

P[r]

D1 (P,Q) = X P[r]log, ol

Normally associated with a distance measure, Di; = 0,Dg; = 0 only at P = Q

Kullback-Leibler divergence between P|r, s] P|r]P]s]



Continuous variables

* H=-)plrlArlog,(plr]Ar) = — Y. plr]Arlog,(p[r]) — log, Ar

« Ar — 0,H — oo : continuous variable measured with perfect accuracy oo entropy

. AlimO(H + log, Ar) = — [ dr p[r]log, p[r] Ar: limit of resolution
Tr—

* AITiAr_r)lO(Hnoise +log, Ar) = de f dr pls] plr|s]log, p[r|s]

+ I = [ds [drpls]plrls]log, 2>



8-2 Information and Entropy
Maximization



Entropy maximization for a Single neuron

Maximum firing rate 7,
form dr p[r] =1, maximize — form dr p[r]log, p[r] — Lagrange multiplier

plr] == - H =log,— Letr = f(s)

T
Tm Ar

|[f(s+As)—f(s)] d
plrliar| = FE22 = plslas , 5 = rypls]

f(s) =1y [ ds'p[s']



Populations of Neurons

Use vector r = (1, -+, 7y)

H = — [ d7 p[7]log, p[7] — Nlog,Ar

Consider  p[ra] = [ [Ipzq d1 PI7]

H, = — | d7 p[7] log, plr,] —log, Ar \H<3,H,

T 5 o p|7]

. KL divergence



Populations of Neurons

* Entropy difference — redundancy

« To achieve Maximum population-response entropy..

1) Individual neurons must response independently

2) Have response probabilities that are optimized for whatever constraints are imposed

 plr,] identical



Populations of Neurons

 Covariance matrix : Qg = [ d7 p[F](r, — (r))(rp, — (1)) = 0764

« Fix the covariance matrix, maximizes the entropy only if the statistics of the
responses are gaussian



Application to Retinal Ganglion Cell Receptive
Field

* Receptive field in Retina, LGN, primary visual cortex

« Maximize the amount of information that the associated neural responds convey
about natural visual scenes in the presence of noise

« Only represent neural responds



Application to Retinal Ganglion Cell Receptive
Field

e L(t) = fooo dt [ dx D(%,7)s(x,t —t) : linear estimation of the response of visual

neuron.

« Contrast function s(x,t), space time receptive field D(x,7) = D;(x)D;(7)
o Ly = [dRDs(®)ss(®)  Le(t) = f, dt Dp()s.(t — 1)

« D: information carrying capacity

« All locations and directions are equivalent — same spatial structure



Application to Retinal Ganglion Cell Receptive
Field Centered at @
/

* L(a) = fdf Ds(f - C_i)Ss(f)

« We proceed as if there were a neuron corresponding to every continuous value of a.
This allows us to treat L(a) as a function of a and to replace sums over neurons with
integrals over a.



Spike Train and Poisson
distribution



Spike train

« Assequence of recorded times at which a neuron fires an action potential

« 100mV over 1~2ms — each time can be considered by a single point
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Example of a spike train. Graph A shows the recorded
stimulus and graph B shows the recorded actions
potentials during the stimulus.



Spike train

Delta function
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Poisson Distribution

 discrete probability distribution that expresses the probability of a given number

of events occurring in a fixed interval of time or space if these events occur with a

known constant mean rate and independently of the time since the last event.

Aee—A
f(k A) = Pr(X=k) = =———,
A = E(X) = Var(X).
. (rt)*e™
P(k events in interval t) = oy

Average rate: r



Example
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Derivation of Poisson distribution
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Entropy and Information for
Spike train



Entropy rate p[r] : action potential LIEfLt= rater 4 &5

< r > T : action potentialO| LtEFL 7l 4~

« Firing rate BF2 = = spike train 25 2Fo[7| 02 &. — entropy =&

+ Entropys 2% A|7H0| S7t5tR 0|0 8]2|5t01 Z7}. — £+9| 4|7t T entropy 2
7t (1)

H = —(r)T f dt p[t] log, (p[t] A7)
0

H< —(r)[ﬂ dr p[t]log, (p[t]AT).

H A2 53 7|2] independent2f {2 H .
17| dependentoH HAStEE B35 dH!



Entropy rate

H< —{r)]ﬂ dz p[t]log, (p[t]AT).

A=A

fk; A) = Pr(X=k) = ——,

()

- () (1 —In({r)AT)) .




Entropy rate

spike sequences of duration Ty, < T ¢

T, continuous variableO| Z| 2 resolution At A ZF — discrete

B(t): T, /At bit binary number

H= —7 2 PIBllog, P[B].  <ojof ojgt oA

B(t+T,) &B(t) : correlate



Entropy rate

B(t + T,) & B(t) correlation reduce the total-spike train entropy

T, too small — B(t + T;) & B(t) correlate
200,
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T, — oof true entropy can be measured
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Entropy rate

Mutual information

: At 1
Hnaise — _? Z (f ;P[B(”]logz P[B(f)])

7| M % is the number of different t values being summed.

Of Uf%”fxli% =02 M A= 8 8o Al¢t



Summary

Shannont information theory can be used to determine how much a neural response tells both us and,
presumably, the animal in which the neuron lives, about a stimulus. Entropy is a measure of the
uncertainty or surprise associated with a stochastic variable, such as a stimulus. Mutual information
quantifies the reduction in uncertainty associated with the observation of another variable, such as a
response. The mutual information is related to the Kullback-Leibler divergence between two probability
distributions. We defined the response and noise entropies for probability distributions of discrete and
continuous firing rates, and considered how the information transmitted about a set of stimuli might be
optimized.

Finally, we discussed how the information conveyed about dynamic stimuli by spike sequences can be
estimated.



